JEE previous year questions:

Chemical Thermodynamics-V

1. An ideal gas undergoes isothermal compression from 5m³ to 1 m³ against a constant external pressure of 4 Nm⁻². Heat released in this process is used to increase the temperature of 1 mole of Al. If molar heat capacity of Al is 24 J mol⁻¹ K⁻¹, the temperature of Al increases by

(Mains, 2019)

- A) 2/3 K
- B) 3/2 K
- C) 1 K
- D) 2 K

Ans: A)2/3 K

Explanation:

Work done on isothermal irreversible for ideal gas

$$= -\mathbf{P}_{\text{ext}} \left(\mathbf{V}_2 - \mathbf{V}_1 \right)$$

$$=-4 \text{ N/m}^2 (1 \text{ m}^3 - 5 \text{m}^3)$$

$$= 16 \text{ Nm}$$

Isothermal process for ideal gas

$$\Delta U = 0$$
 so, $Q = -W = -16$ Nm= -16 J

Heat used to increase temperature of Al,

$$Q = nC_m\Delta T$$

$$16 = 1 \times 24 \times \Delta T$$

So,
$$\Delta T = 2/3K$$

- 2. For which of the following reactions, ΔH is equal to ΔU ? (Mains, 2018)
- A) $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$
- B) $2HI(g) \rightarrow H_2(g) + I_2(g)$
- C) $2NO_2(g) \rightarrow N_2O_4(g)$
- D) $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$

Ans: B)

Explanation:

Both in the reactants and products side number of moles of gas molecules =2. So, Δn_g =0

3. The enthalpy change on freezing of 1 mol of water at 5°C to ice at -5°C is (Given $\Delta_{\text{fus}}H = 6 \text{ kJ mol}^{-1}$ at 0°C,

$$C_p(H_2O, \ell = 75.3 \text{J mol}^{-1} \text{ K}^{-1})$$

$$C_p(H_2O, s) = 36.8 \text{ J mol}^{-1} \text{ K}^{-1})$$
 (Mains, 2017)

- A) 5.44 kJ/mol
- B) 5.81 kJ/mol
- C) 6.56 kJ/mol
- D) 6.00 kJ/mol

Ans: 6.56 kJ/mol

Explanation:

$$\Delta H = \Delta H_1 + \Delta_{fus} H + \Delta H_2$$

ΔH₁: Enthalpy change for solid ice from -5 °C to 0 °C

ΔH₂: Enthalpy change for liquid water from 0 °C to 5 °C

So,
$$\Delta H= 1 \times 36.8/1000 \times (0-(-5)) +6 +1 \times 75.3/1000 \times (5-0) =6.56$$

4. Given, C(graphite)+ $O_2 \rightarrow CO_2(g)$

$$\Delta_r H_o = -393.5 \text{ kJ mol}^{-1}$$

$$H_2(g) + (1/2) O_2(g) \rightarrow H_2O(1)$$

$$\Delta_{\rm r} H_{\rm o} = -285.8 \text{ kJ mol}^{-1}$$

$$CO_2(g) + 2H_2O(1) \rightarrow CH_4(g) + 2O_2(g)$$

$$\Delta_{\rm r} H_{\rm o} = + 890.3 \text{ kJ mol}^{-1}$$

Based on the above thermochemical equations, the value of $\Delta_r H_o$ at 298 K for the reaction C(graphite) + $2H_2(g) \rightarrow CH_4(g)$ will be:

- A) + 144 kJ/mol
- B) -74.8 kJ/mol
- C) -144 kJ/mol
- D) +74.8 kJ/mol

Ans: B) -74.8 kJ/mol

Explanation:

$$C(graphite)+O_2 \rightarrow CO_2(g)$$
(1)

$$\Delta_r H_o =$$
 - 393.5 kJ mol⁻¹

$$H_2(g) + (1/2) O_2(g) \rightarrow H_2O(1)$$
....(2)

$$\Delta_r H_o =$$
 - 285.8 kJ mol⁻¹

$$CO_2(g) + 2H_2O(1) \rightarrow CH_4(g) + 2O_2(g)....(3)$$

$$\Delta_{\rm r} H_{\rm o} = +~890.3~{\rm kJ~mol^{-1}}$$

Given reaction:
$$C(graphite) + 2H_2(g) \rightarrow CH_4(g)$$

$$\Delta H = \Delta_r H_{o,1} + 2 * \Delta_r H_{o,2} + \Delta_r H_{o,3}$$